Studien zum Raman-Effekt.

Mitteilung 165, Benzolderivate XXV: Modellmäßige Berechnung der Kettenspektren von C₆X₆, p-C₆X₂ und symm. C₆X₂.

Von

E. Herz und J. Wagner.

272. Mitteilung aus dem Physikalischen Institut der Techn. Hochschule Graz.

Mit 1 Abbildung.

(Eingelangt am 22. Nov. 1944. Vorgelegt in der Sitzung am 23. Nov. 1944.)

Die bisher behandelten Molekülmodelle — Variation der Masse eines oder mehrerer Substituenten X zwischen eins und Unendlich — gehören fast ausschließlich zu offenen Ketten; im einzelnen seien hier angeführt: 1. die linearen Systeme $X \cdot C \colon N^1$ und $X \cdot C \colon C \cdot X^2$, 2. die ebenen Systeme $X \cdot C \colon C \cdot X$ (cis, trans), $X_2C \colon O$, $X_2C \colon CX_2^2$ und die Kette (CH₃) · (CH₂) · X³ (die Klammer bedeutet, daß die Methyl- bzw. Methylengruppe als einheitliche Masse angesehen wird), 3. die räumlichen Systeme H_3CX^4 , $H_2CX_2^5$ und CX₄, HCX₃, (CH₃)₂CX₂, (CH₃)₂(CH)X, (CH₃)(CH)X₂⁶.

Das diesbezügliche Zahlenmaterial für Benzolderivate ist jedoch sehr gering. So wurden lediglich von Burkard² die totalsymmetrischen Frequenzen für symmetrisch trisubstituiertes Benzol C_6X_3 und von Kohlrausch-Paulsen⁷ die ebenen Schwingungen für p-di-substituiertes Benzol C_6X_2 mit Hilfe der von Trenkler⁸ angegebenen Frequenzformeln berechnet. Um diese bei der Deutung der Beobachtung oft unangenehm

¹ L. Kahovec und K. W. F. Kohlrausch, Z. physik. Chem., Abt. B 37, 421 (1937).

² O. Burkard, Proc. Indian Acad. Sci. 8, 365 (1938).

³ J. Wagner, Z. physik. Chem., Abt. B 40, 439 (1938).

⁴ J. Wagner, Z. physik. Chem., Abt. B 40, 36 (1938).

⁵ J. Wagner, Z. physik. Chem., Abt. B 45, 69 (1939).

⁶ J. Wagner, Z. physik. Chem., Abt. B 45, 341 (1940).

⁷ K. W. F. Kohlrausch und O. Paulsen, S.-B. Akad. Wiss. Wien 147, 344 (1939); Mh. Chem. 72, 268 (1939).

⁸ F. Trenkler, Physik. Z. 37, 338 (1936).

fühlbare Lücke auszufüllen, werden hier die einfachsten Beispiele, nämlich Hexa-, 1,4- und 1,3,5-substituiertes Benzol vollständig durchgerechnet. Aber auch für diese Fälle mußte eine Beschränkung auf die Kettenschwingungen (Vernachlässigung der H-Atome) vorgenommen werden, da selbst dann noch Frequenzgleichungen vom 4. und 5. Grad numerisch auszuwerten sind.

1. Hexabenzol C₆X₆.

Frequenzformeln für die ebenen Schwingungen des Hexabenzols C_6X_6 wurden von *Manneback* und Mitarbeitern,⁹ für die ebenen und

Abb. 1. Modell des Hexabenzols C_6X_6 .

Senkrechtschwingungen von $Wilson^{10}$ abgeleitet (siehe für letztere auch die Darstellung bei Kohlrausch¹¹). Die beiden Formeln unterscheiden sich dadurch, daß *Manneback* im Potentialansatz Wechselwirkungsglieder vorsieht, *Wilson* jedoch nicht.

Um vergleichbare Aussagen über die Kettenspektren der Benzolderivate C_6X_6 , $p-C_6X_2$ und symm. C_6X_3 zu erhalten, ist es notwendig, in allen Fällen ein gleichartiges Kraftsystem zugrunde zu legen. Da nun hier, ebenso wie bei den eingangs erwähnten Beispielen der offenen Kette, durch Variation von X allein nur ein

spektraler Überblick gewonnen werden soll, wird man sich für den *Wilsonschen* Potentialansatz entscheiden; denn einerseits ist der Einfluß der Wechselwirkungsglieder auf das allgemeine spektrale Verhalten von untergeordneter Bedeutung, anderseits wird durch sie die ohnehin schon komplizierte numerische Rechnung noch wesentlich erschwert, ohne daß der Aufwand in einem Verhältnis zum Erfolg steht.

Das Wilsonsche Benzolmodell weicht in Einzelheiten vom üblichen Valenzkraftmodell etwas ab, es sei deshalb die Bedeutung der Modellkonstanten (in der Schreibweise von Kohlrausch¹¹) nochmals angegeben (vgl. Abb. 1). Es sind F bzw. f die Konstanten der Valenzfederkräfte im bzw. am Ring, D die Konstante der den Ringwinkel erhaltenden Kraft; d ist die Konstante derjenigen Kraft, die einer Auslenkung der Außenbindung aus der Ringwinkelhalbierenden entgegenwirkt. Die Auslenkung einer Außenbindung (z. B. 1,1') aus der durch die benachbarten Ring-

⁹ C. Manneback, Ann. Bruxelles 55, 5, 129, 237 (1935). — E. Bernard, C. Manneback und A. Verleysen, Ann. Bruxelles 59, 376 (1939).

¹⁰ E. B. Wilson, Physic. Rev. 45, 706 (1934).

¹¹ K. W. F. Kohlrausch, Z. physik. Chem., Abt. B 30, 305 (1935). — In Gl. (19) auf S. 308 ein Druckfehler. Für den Faktor $^{3}/_{2}$ im 1. Glied ist $^{3}/_{4}$ zu setzen.

valenzen gegebenen Ebene (6, 1, 2) wird durch eine Kraft g behindert. Der Ring selbst wird dadurch eben erhalten, daß bei nicht-ebener Verzerrung desselben sich die als (ausgeglichene) Doppelbindungen gedachten Ringvalenzen umeinander verdrillen, durch eine Federkraft G jedoch in ihre Ausgangslage zurückgedreht werden. Schließlich sind noch M bzw. m die Ring- bzw. Substituentenmassen und S bzw. s die Entfernungen M-M bzw. M-m.

Der Unterschied zwischen dem hier durchwegs verwendeten Wilsonschen Kraftsystem und dem üblichen Valenzkraftsystem liegt darin, daß in letzterem die Richtung der Außenbindung in der Ebene durch zwei Winkelkräfte d' stabilisiert ist (siehe Abb. 1). Für den Potentialansatz hat dies zur Folge, daß bei Auslenkung einer Außenbindung um $\Delta \alpha$ im ersten Falle die Arbeit $1/2 d (s \Delta \alpha)^2$, im zweiten Falle die Arbeit $2 \cdot 1/2 d' (\sqrt{S \cdot s} \cdot \Delta \alpha)^2$ zu leisten ist. Behält anderseits eine Außenbindung bei symmetrischer Änderung des Ringwinkels um $\Delta \beta$ ihre Richtung bei, so ist beim Wilsonschen Modell nur die Arbeit $1/2 D (S \Delta \beta)^2$, beim Valenzmodell jedoch die Arbeit $1/2 \cdot D (S \Delta \beta)^2 + 2 \cdot 1/2 d' (\sqrt{S \cdot s} \Delta \beta/2)^2$, aufzuwenden. Die beiden Modelle werden daher nicht zu prinzipiell gleichen Frequenzformeln (etwa d' proport. d) führen, wie man vielleicht nach oberflächlicher Überlegung vermuten könnte.

Die numerische Auswertung der Wilsonschen Frequenzformeln erfolgte unter den Bedingungen: F = 7.6, f = 5.1, D = 0.65, d = 0.77, G = 0.23, $g = 0.34 \cdot 10^5$ Dyn/cm, M = 12, m = variabel, S = 1.42, $s = 1.08 \cdot 10^{-8}$ cm. Die Kraftkonstanten wurden so gewählt, daß für den Fall X = H (Benzol)¹² eine möglichst gute Beschreibung der beobachteten Frequenzen erreicht wird. Das Ergebnis der Rechnung ist in Tabelle 1 zusammengestellt. Die Frequenzwerte für die Klasse E^+_{g} wurden nach dem *Graeffe*-Verfahren bestimmt; diese Methode wurde auch für die anderen Modelle zu Auflösungen von Gleichungen mit höherem als dritten Grad verwendet.

2. p-Benzol C₆X₂.

Frequenzformeln für die ebenen Schwingungen des p-Benzols $C_6H_4X_2$ wurden — wegen des hohen Grades der Gleichungen in impliziter Form von *Bernard-Manneback-Verleysen*¹³ und *Redlich-Stricks*,¹⁴ für die ebenen Schwingungen der Kette p- C_6X_2 von *Trenkler*⁸ angegeben, wobei letzterer den *Wilson*schen Potentialansatz (keine Wechselwirkungsglieder) ver-

¹² Zusammenfassende Darstellung bei K. W. F. Kohlrausch, Smekal-Raman-Effekt, Erg.-Band, S. 160. Springer-Verlag, 1938.

¹³ E. Bernard, C. Manneback und A. Verleysen, Ann. Bruxelles 60, 45 (1940).

¹⁴ O. Redlich und W. Stricks, S.-B. Akad. Wiss. Wien, Abt. IIb 145, 594 (1936).

Nr.	Auswahl		m = 1	2	4	15	36	80	~~~	
1 2	A_{1g}	p, ia	{	994 3085	$\begin{array}{c} 945 \\ 2294 \end{array}$	849 1805	$\begin{array}{c} 548 \\ 1444 \end{array}$	$\begin{array}{c} 374\\ 1383 \end{array}$	$\begin{array}{c} 252\\ 1360 \end{array}$	0 1344
3	A_{2g}	v, ia		1286	998	817	653	614	596	583
4 5	B_{2g}	v, ia	{	$\begin{array}{c} 1497 \\ 552 \end{array}$	$\begin{array}{r} 1447 \\ 404 \end{array}$	1424 290	$\begin{array}{c} 1408 \\ 151 \end{array}$	$\begin{array}{c} 1405 \\ 100 \end{array}$	$\begin{array}{c} 1404 \\ 65 \end{array}$	$\begin{array}{c} 1402 \\ 0 \end{array}$
6 7 8 9	E_g^+	dp, ia	{	611 3085 1800 1090	591 2309 1740 780	$550 \\ 1939 \\ 1563 \\ 556$	$\begin{array}{r} 287 \\ 1846 \\ 1151 \\ 364 \end{array}$	188 1839 1046 293	106 1836 999 237	0 1817 988 0
10	E_{g}^{-}	dp, ia		854	663	543	434	408	396	387
11	A_{2u}	v, a		793	582	440	295	255	236	220
$12 \\ 13$	B _{1u}	v, ia	{	$1007 \\ 3085$	$\begin{array}{c} 957 \\ 2295 \end{array}$	859 1809	$\begin{array}{c} 552\\ 1452 \end{array}$	$\begin{array}{c} 376\\ 1393 \end{array}$	$\begin{array}{c} 253\\1371 \end{array}$	$\begin{array}{c} 0\\ 1354 \end{array}$
$\frac{14}{15}$. B _{2 u}	v, ia	{	1849 1116	$\begin{array}{r} 1834 \\ 794 \end{array}$	$\begin{array}{r} 1831 \\ 563 \end{array}$	1831 291	1831 190	$\begin{array}{c} 1831\\ 126 \end{array}$	1830 0
$\frac{16}{17}$	E_u^+	v, ia	{	$\begin{array}{c} 1149\\ 415 \end{array}$	$\begin{array}{c} 1049\\ 322\end{array}$	1001 238	$\begin{array}{c} 967 \\ 127 \end{array}$	960 84	$\begin{array}{c} 958\\ 56\end{array}$	$\begin{array}{c} 955\\ 0\end{array}$
18 19 20	E_u^-	v, a	{	$1000 \\ 1513 \\ 3084$	$755 \\ 1395 \\ 2298$	$557 \\ 1263 \\ 1840$	312 901 1596	$213 \\ 757 \\ 1568$	$145 \\ 684 \\ 1557$	$\begin{array}{c} 0 \\ 622 \\ 1550 \end{array}$

Tabelle 1. Berechnete Frequenzen hexasubstituierter Benzole $C_s X_s$.

wendet. Trenklers Formeln für die Schwingungsklassen B_{1g} und B_{3u} sind allerdings unrichtig; die von O. Burkard richtiggestellten Formeln wurden bisher nicht veröffentlicht. Bezüglich der Klassen A_{1g} und B_{2u} sei zwecks Raumersparnis auf die Trenklersche Darstellung verwiesen, wobei jedoch auf Schreibfehler aufmerksam gemacht werden muß, auf die zum Teil schon Kohlrausch-Paulsen⁷ hingewiesen haben, und zwar: Im letzten Glied der zweiten Gleichung und ersten Glied der dritten Gleichung soll es statt $\frac{3(F+D)}{M}$ heißen $\frac{3(F+3D)}{M}$; weiters ist der Faktor $\frac{2F}{M}$ im ersten Glied der dritten Gleichung zu ändern in $\frac{F}{2M}$. Die richtiggestellten Formeln der ebenen Schwingungen sowie die neu abgeleiteten der Senkrechtschwingungen lauten:

Klasse B_{1g}

$$\sum n^2 = \frac{1}{M} \left(F + 7D \right) + \frac{1}{2M'} \left(3F + D \right) + \frac{d}{M} \left(1 + \frac{m}{2M} + \frac{9m}{4M'} \right)$$
$$\sum n^2 n^2 = \frac{4FD}{M^2} \left(1 + \frac{2M}{M'} \right) + \frac{Fd}{Mm} \left(1 + \frac{3M}{2M'} + \frac{3m}{M'} + \frac{m}{2M} \right) +$$

$$+ \frac{D d}{M m} \left(7 + \frac{M}{2 M'} + \frac{13 m}{M'} + \frac{3 m}{2 M}\right)$$
$$n^2 n^2 n^2 = \frac{4 F D d}{M^2 m} \left(1 + \frac{2 M}{M'} + \frac{4 m}{M'}\right)$$

Klasse B_{3u}

$$\begin{split} \sum n^2 &= \frac{1}{M} \left(3\,F + D \right) \left(1 + \frac{M}{2\,M'} \right) + \frac{d}{m} \left(1 + \frac{m}{2\,M} + \frac{9\,m}{4\,M'} \right) \\ \sum n^2 n^2 &= \frac{3\,F}{2\,M} \frac{(F+D)}{M} \left(1 + \frac{2\,M}{M'} \right) + \frac{3F\,d}{M\,m} \left(1 + \frac{m}{4\,M} + \frac{M}{2\,M'} + \frac{5\,m}{2\,M'} \right) + \\ &\quad + \frac{D\,d}{M\,m} \left(1 + \frac{m}{M'} + \frac{M}{2\,M'} \right) \\ n^2 n^2 n^2 &= \frac{3\,F\,(F+D)\,d}{2\,M^2\,m} \left(1 + \frac{2\,M}{M'} + \frac{m}{M'} \right) \end{split}$$

Klasse A_{1u}

$$n^2 = \frac{12 G}{M}$$

Klasse B_{1u}

$$n^{2} + n^{2} = \frac{4 G}{M} \left(1 + \frac{2 M}{M'} \right) + \frac{g}{m} \left(1 + \frac{m}{2 M} + \frac{4 m}{M'} \right)$$
$$n^{2} n^{2} = \frac{4 G g}{M m} \left(1 + \frac{2 M}{M'} + \frac{m}{M'} \right)$$

Klasse B_{3g}

$$egin{aligned} n^2 + n^2 &= rac{24\,G}{M} \left(1 + rac{M}{2\,M'}
ight) + rac{g}{m} \left(1 + rac{4\,m}{M'}
ight) \ n^2\,n^2 &= rac{24\,G\,g}{M\,m} \left(1 + rac{M}{2\,M'} + rac{3\,m}{M'}
ight) \end{aligned}$$

Die Bedeutung der Konstanten ist die gleiche wie im Hexabenzol C_6X_6 ; um der Vernachlässigung der H-Atome wenigstens einigermaßen Rechnung zu tragen, wurden die Ringmassen unterschieden in M(C+H) und M'(C). Ferner muß noch darauf verwiesen werden, daß alle Formeln, auch die von *Trenkler*,⁸ unter der Bedingung S = s abgeleitet wurden.

Die Frequenzgleichungen wurden mit den gleichen Bedingungen für die Kraftkonstanten wie im Hexabenzol sowie M = 13, M' = 12 und m = variabel ausgewertet. Das Ergebnis der Rechnung befindet sich in Tabelle 2.

3. Symm. Tribenzol C_6X_3 .

Frequenzgleichungen für die ebenen Schwingungen des symm. Tribenzols $C_6H_3X_3$ wurden — zum Teil wieder in impliziter Darstellung von *Bernard-Manneback-Verleysen*,¹³ für die Schwingungsklassen A_1' und A_2' der Kette C_6X_3 von *Trenkler⁸* angegeben, wobei letztere Formeln für die Klasse A_2' allerdings unrichtig sind. Auch sie wurden später von O. *Burkard* korrigiert, aber nicht veröffentlicht.

Monatshefte für Chemie. Bd. 76/2.

7

					02-				
Nr.	At	ıswahl	m = 1	2	4	15	36	80	8
1 2 3 4	A_{1g}	p , ia $\left\{ \left. \left. \right. \right\} \right. \right\}$	3084 1659 1000 607	2298 1638 981 593	1864 1552 949 564	1728 1273 848 429	1719 1214 808 311	1716 1193 790 214	1714 1178 777 0
$5 \\ 6 \\ 7$	B_{1g}	dp, ia	$1788 \\ 614 \\ 1140$	$1761 \\ 609 \\ 862$	$1753 \\ 608 \\ 665$	$1748 \\ 463 \\ 612$	$1748 \\ 407 \\ 612$	$1748 \\ 382 \\ 612$	$1747 \\ 361 \\ 612$
8 9 10	B _{2u}	$v, M_y \left\{ \right.$	3084 1010 1271	$\begin{array}{c} 2293 \\ 991 \\ 1247 \end{array}$	1814 942 1201	$1506 \\ 704 \\ 1123$	$1466 \\ 564 \\ 1108$	$1452 \\ 481 \\ 1102$	1442 400 1098
$11 \\ 12 \\ 13$	B_{3u}	$v, M_x \bigg\{$	$1785 \\ 1000 \\ 1471$	1780 756 1399	$1775 \\ 556 \\ 1382$	$1771 \\ 352 \\ 1373$	$1770 \\ 250 \\ 1371$	$1770 \\ 211 \\ 1371$	$1770 \\ 174 \\ 1370$
$14\\15$	B_{3g}	dp, ia	1211 633	$\begin{array}{c}1122\\584\end{array}$	$\begin{array}{c}1113\\464\end{array}$	$\begin{array}{c} 1108\\ 347 \end{array}$	$\frac{1107}{317}$	$\begin{array}{c} 1107\\ 304 \end{array}$	$\begin{array}{c} 1106 \\ 293 \end{array}$
16	A_{1u}	v, ia	602	602	602	602	602	602	602
17 18	B _{1u}	$v, M_z \Big\{$	967 493	853 401	805 307	$776\\185$	$\begin{array}{c} 771\\ 143\end{array}$	$769 \\ 121$	$\begin{array}{c} 767 \\ 100 \end{array}$

Tabelle 2. Berechnete Frequenzen p-disubstituierter Benzole C_6X_2 .

Die Frequenzgleichungen der Kette $\mathrm{C}_6\mathrm{X}_3$ lauten für die einzelnen Klassen:

Klasse
$$A_1'$$

$$\sum n^{2} = \frac{F}{M} + \frac{f}{m} \left(1 + \frac{m}{M} \right) + \frac{12 D}{M}$$
$$\sum n^{2} n^{2} = \frac{1}{M m} \left(F f + 12 f D \right) \left(1 + \frac{m}{2 M} \right) + \frac{12 F D}{M^{2}}$$
$$n^{2} n^{2} n^{2} = \frac{12 F f D}{M^{2} m}$$

Klasse A_2'

$$\sum n^2 = \frac{3F}{M} + \frac{d}{m} \left(1 + \frac{5m}{2M} \right)$$
$$n^2 n^2 = \frac{3Fd}{Mm} \left(1 + \frac{2m}{M} \right)$$

Klasse $A_2^{\prime\prime}$

$$\sum n^{2} = \frac{36 G}{M} + \frac{g}{m} \left[1 + \left(1 + \frac{4 s}{S} + \frac{8 s^{2}}{S^{2}} \right) \frac{m}{M} \right]$$
$$n^{2} n^{2} = \frac{36 G g}{M m} \left(1 + \frac{m}{2 M} \right)$$

Klasse $E^{\prime\prime}$

$$\sum n^2 = \frac{12 \, G}{M} + \frac{g}{m} \left[1 + \left(1 + \frac{4 \, s}{S} + \frac{5 \, s^2}{S^2} \right) \frac{m}{M} \right]$$

	, , , , , , , , , , , , , , , , , , ,									
Nr.	A	ıswahl	m = 1	2	4	15	36	80	∞	
1 2 3	A_1'	p, ia	3085 1001 1046	$2295 \\ 951 \\ 1046$	$1807 \\ 853 \\ 1046$	$1448 \\ 550 \\ 1046$	$1338 \\ 376 \\ 1046$	$1366 \\ 253 \\ 1046$	1349 0 1046	
4 5	A_{2}^{\prime}	v, ia	1828 1219	$\begin{array}{c} 1821\\925\end{array}$	1818 732	$\begin{array}{c}1817\\544\end{array}$	$\begin{array}{c}1817\\502\end{array}$	1817 481	$\begin{array}{c} 1817\\ 464 \end{array}$	
6 7 8 9 10	E'	dp, a	$\begin{array}{c c} 3085\\ 1772\\ 1468\\ 1016\\ 660 \end{array}$	$\begin{array}{c} 2303 \\ 1770 \\ 1375 \\ 756 \\ 649 \end{array}$	$1900 \\ 1688 \\ 1289 \\ 627 \\ 550$	$1813 \\ 1513 \\ 1016 \\ 530 \\ 304$	$1808 \\ 1491 \\ 928 \\ 451 \\ 209$	1806 1478 894 397 145	$1805 \\ 1478 \\ 870 \\ 343 \\ 0$	
$\begin{array}{c c}11\\12\end{array}$	$A_2^{\prime\prime}$	v,a {	$\begin{array}{c}1427\\591\end{array}$	$\begin{array}{c} 1379\\ 441 \end{array}$	$\begin{array}{c} 1357\\ 329\end{array}$	$\begin{array}{c}1343\\202\end{array}$	$\begin{array}{c} 1340\\ 163\end{array}$	$\begin{array}{c} 1339\\144 \end{array}$	$\begin{array}{c} 1338\\126\end{array}$	
13 14	$E^{\prime\prime}$	dp, ia	$\begin{array}{c}1114\\462\end{array}$	$\begin{array}{c} 1108\\ 386 \end{array}$	958 322	923 250	916 230	913 221	911 214	
		$n^2 n^2 =$	12 G g	1 + (1)	$(\pm \frac{s}{2})^2$	m	1			

Tabelle 3. Berechnete Frequenzen 1,3,5-trisubstituierter Benzole C_6X_3 .

 $n^{2} n^{2} = \frac{12 \text{ Gy}}{M m} \left[1 + \left(1 + \frac{3}{S} \right) \frac{m}{2 M} \right]$

Die vollständige Wiedergabe der Formeln für die Klasse E' (Gleichung 5. Grades!) würde zuviel Raum einnehmen, selbst die Säkulardeterminante ist dazu noch zu umfangreich; es seien daher nur die Beziehungen

$$\sum n^2 = rac{4\,F + 9\,D}{M} + rac{f_i}{m} \Big(1 + rac{m}{M}\Big) + rac{d}{m} \Big(1 + rac{4\,m}{M}\Big) ext{ und}
onumber n^2\,n^2\,n^2\,n^2 = rac{9\,F\,f\,d}{M^3\,m^2} \Big(4\,F\,D + rac{1}{2}\,F\,D + 4\,D^2 + D\,d\Big) \Big(1 + rac{m}{2\,M}\Big)$$

angeführt. Zu diesen beiden Formeln ist zu bemerken, daß sie nur für S = s gelten; ihre Ableitung für $S \neq s$ hätte unverhältnismäßig mehr Aufwand erfordert. Im übrigen sind die Konstanten gleich definiert wie in den vorhergehenden Modellen. Von einer Unterscheidung der Ringmassen in M (C+H) und M' (C) wurde im Hinblick auf die damit verbundene Erschwerung der Ableitung der Frequenzformeln für die Klasse E' von vornherein abgeschen. Die in Tabelle 3 wiedergegebenen Frequenzwerte wurden auch hier mit den für das Hexabenzol getroffenen Annahmen der Kraftkonstanten, ferner mit S = s, M = 12 und m = variabel erhalten.

Zum Schluß sei noch darauf verwiesen, daß die Zahlen der Tabellen 1, 2, 3 trotz der Wahl eines einheitlichen Kraftsystems deshalb nicht streng vergleichbar sind, weil einerseits beim Hexabenzol $S \neq s$, bei den anderen Modellen jedoch S = s ist und anderseits die Unterscheidung der Ringmassen m, M' und M, wie sie für das p-Benzol C₆X₂ getroffen wurde, beim symm. Tribenzol C₆X₃ fallen gelassen wurde.